Hybrid Wavelet and Chaos Theory for Runoff Forecasting

نویسندگان

  • Chen Xi
  • Jiang Chuanwen
  • Wang Yu
  • Zhou Jian
چکیده

-This paper introduced a method of decomposing non-stationary runoff time series. By wavelet decomposing, the runoff time series is decomposed into stationary time series and stochastic time series, and AR(n) model be imposed for forecasting stationary time series. By studying chaos characteristic of stochastic time series, this paper put forward a nonlinear chaos dynamics-forecasting model to dispose runoff time series with high-embedded dimension. It can effectively decrease the Lyapunov exponential sum in added dimensions of reconstruction set when the dimensions of reconstructed space are increased. Finally, the forecasting result is reconstructed based on wavelet theory. The forecasting result of original runoff time series is achieved. The method is high precision and feasible through example test.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)

  One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

متن کامل

تحلیل و پیش‌بینی اثرات غیرخطی در بازار نفت

This research aims to introduce an ideal model for forecasting Iranian crude oil price movements. It tries to make an all-out analysis of this energy product. Therefore, we tested the ‘predictability’ hypothesis by using the variance ratio test, BDS test and the chaos series test. Later, a structural analysis is a carried out to investigate possible nonlinear patterns in the series. Lyapunov ex...

متن کامل

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005